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Introducing Swish and Parallelized Blind Removal Improves
the Performance of a Convolutional Neural Network in
Denoising MR Images

Taro Sugai', Kohei Takano?, Shohei Ouchi?, and Satoshi Ito!"

Purpose: To improve the performance of a denoising convolutional neural network (DnCNN) and to
make it applicable to images with inhomogeneous noise, a refinement involving an activation function
(AF) and an application of the refined method for inhomogeneous-noise images was examined in
combination with parallelized image denoising.

Methods: Improvements in the DnCNN were performed by three approaches. One is refinement of the AF of
each neural network that constructs the DnCNN. Swish was used in the DnCNN instead of rectifier linear unit.
Second, blind noise removal was introduced to the DnCNN in order to adapt spatially variant noises. Third,
blind noise removal was applied to parallelized image denoising, referred to herein as ParBID. The ParBID
procedure is as follows: (1) adjacent 2D slice images are linearly combined to obtained higher peak SNR (PSNR)
images, (2) combined images with different weight coefficients are denoised using the blind DnCNN, and (3)
denoised combined images are separated into original position images by algebraic calculation.

Results: Experimental studies showed that the PSNR and the structural similarity index (SSIM) were
improved by using Swish for all noise levels, from 2.5% to 7.5%, as compared to the conventional DnCNN.
It was also shown that a well-trained CNN could remove spatially variant noises superimposed on images.
Experimental studies with ParBID showed that the greatest PSNR and SSIM improvements were obtained
at the middle slice when three slice images were used for linear image combination. More fine structures of
images and image contrast remained when the proposed ParBID procedure was used.

Conclusion: Swish can improve the denoising performance of the DnCNN, and the denoising perfor-
mance and effectiveness were further improved by ParBID.
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Introduction

MRI is widely used in the medical field because of its high
soft tissue contrast and noninvasiveness. With the increase of
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main magnetic field strength and other technological
advances, MR images have achieved higher spatial resolu-
tions and SNRs. On the other hand, low-SNR images can be
obtained by imaging methods such as functional MRI or
parallel imaging techniques. There is still a great demand
for the removal of noise from MR images. To date, numerous
methods have been proposed for denoising MR images, but
balancing the conflicting requirements of noise removal
while preserving the detailed structure is difficult, and there
is still plenty of room for improvement.

Denoising methods that have been developed for natural
images are often used to address the issue of denoising in
medical images. In recent years, natural image denoising meth-
ods incorporating new signal processing methods have been
proposed. Such methods include the total variation filter,' the
total generalized variation ﬁlter,2 the anisotropic diffusion filter,
which solves differential equations in the image space,” the
non-local mean filter,* the block-matching and 3D (BM3D)
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filter,” which samples regions within the image with similar
patterns and performs smoothing, the weighted nuclear norm
minimization (WNNM) filter, which adaptively assigns weights
to different singular values in the low-rank matrix approxima-
tion problem,® and the dual-domain image denoising filter,
which performs denoising in two spaces: wavelet space and
image space.” These filters are known to have high denoising
abilities while preserving the sharpness of contours of natural
images. In medical imaging applications, fine structures and
small orifices in the images may provide information about the
lesion, and the loss of these structures may reduce the accuracy
of diagnostic imaging. Therefore, maintaining spatial resolution
and image contrast in medical imaging are more important than
obtaining natural images.

Recently, the application of deep learning to the image
denoising problem has attracted significant attention, not
only for natural images, but also for medical images. He et
al. proposed residual learning in a deep learning network®
to speed up the training process and improve the perfor-
mance of image recognition. Zhang et al. constructed a
denoising convolutional neural network (DnCNN) for
natural images using residual learning.’ A rectifier linear
unit (ReLU) and batch normalization (BN) are used to
boost the denoising performance. Zhang et al. demon-
strated that the DnCNN exhibited high effectiveness in
several image denoising tasks.’ Inspired by the DnCNN
of Zhang et al., several attempts at applying this method to
MR images have been reported. Manjon et al. applied the
DnCNN to 3D MR images by constructing a 3D CNN.'°
Jiang et al. applied the DnCNN to 2D MR images as a pre-
process for image segmentation.'' Latif et al. proposed a
denoising method that combines the DnCNN and an ani-
sotropic diffusion filter'? to obtain better results for the
segmentation of the tumorous portion of 3D MR images."?
All of these studies used ReLU as an activation function
(AF). Isogawa examined the soft thresholding function for
AF in an image denoising CNN'* and demonstrated adap-
tivity to natural images with various noise levels in one
CNN. The main function of soft thresholding is to make
the CNN adjustable to unknown noise levels. The AF of
the CNN is still being improved, and there is still room for
improvement.

In the present study, the DnCNN was improved by
three approaches. One is refinement of the AF of each
neural network that constructs the DnCNN. The ReLU
function has become a widely used AF in many CNN
applications. However, the discussion of the AF is insuf-
ficient as related to the DnCNN because gradients are
able to propagate only when the input to ReLU is posi-
tive and show zero activations and derivatives in the
negative region. Recently, Ramachandran et al. proposed
Swish as a new AF, with which they showed that Swish
matches or outperforms ReLU on many applications
using deep learning networks, such as image classifica-
tion or machine translation.'”

In the present paper, we adopted Swish as an AF of the
DnCNN in order to improve the denoising performance of
the original DnCNN using ReLU. Second, blind noise
removal was introduced to the MR image, in which the
noise level varies spatially. The DnCNN can be extended to
handle general image denoising tasks, where the noise level
of the image is unknown.’ Zhang et al. revealed the effec-
tiveness of blind denoising for natural images (referred to
herein as denoising convolutional neural network-blind
[DnCNN-B]). Kidoh et al.'® and Isogawa et al.'* also demon-
strated image denoising methods with various noise levels in
one CNN. However, these studies did not state the effective-
ness of their methods for images in which the noise level
varies spatially on the image space. In general, the noise
levels of MR images are unknown and sometimes vary
spatially in such cases for the sensitivity encoding method
(SENSE'"). However, accurately estimating the noise level
on the image space is difficult. Therefore, a denoising
method to deal with images in which the noise level varies
spatially and the associated learning method were investi-
gated in the present paper. Third, we applied this blind image
denoising to parallelized image denoising. If adjacent slice
images have a similar anatomical structure and the noise
distribution of each slice image is independent, then aver-
aging these slice images will result in improvement of the
SNR. Denoising these averaged images is expected to result
in the improvement of image sharpness and contrast preser-
vation. Blind noise removal using the DnCNN is useful and
effective for denoising these combined images, in which
noise levels are unknown and vary spatially. Since combined
images suffer from blurring, slice images are separated by
solving linear equations. The refined DnCNN with paralle-
lized denoising was compared with the conventional DnCNN
and state-of-the-art nonlinear denoising filters.

Materials and Methods

Network architecture and optimization

The basic neural network used in the present study is the
DnCNN proposed by Zhang et al.’ The architecture of the
DnCNN is illustrated in Fig. 1. The network depth d = 17
and the receptive field size of 35 were used. Convolution
(Conv) and an AF were applied in the first layer. BN was
added between Conv and AF, and Conv, BN, and AF were
applied from the second layer up to the second-to-last layer.
Finally, Conv alone was applied in the final layer. Here,
Conv and AF serve to extract features of the input data,
whereas BN serves to boost learning efficiency. A total of
64 filters of size 3 x 3 were used for network convolution,
which exhibited good outputs.'® In denoising tasks of MR
images, the size of output image should be the same as that
of the input image. Therefore, simple zero data padding at
the boundary of noisy input images was carried out so that
the feature map of the middle layers has the same size as the
input image.’
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Fig. 1 The architecture of DnCNN network for blind noise. First layer has Conv and an AF. BN is added between Conv and AF in the middle
layers 2—(d-1). To handle images with blind and spatially variant noises, patches with different noise levels are combined in a single batch.
AF, activation function; BN, batch normalization; Conv, convolution; DnCNN, denoising convolutional neural network.

Adam'® was used in order to minimize the value of the
loss function and bring the network closer to the optimal
state for updating the training parameters. We trained the
DnCNN for 20 epochs. The initial learning rates were as
follows: 1.0 x 10~ in epochs 1 through 10 and 1.0 x 10™* in
epochs 11 through 20.

Swish

Swish can be described as the multiplication of the input x with
the sigmoid function, as shown in Eq. [1], where f is a constant.
Swish becomes a linear function f(x) =x/2 when =0
and becomes like the ReLU Function When 8 — c0." Fig. 2
plots the profiles of Swish for § values from 0.1 to 4.0. The
function looks like ReLU in the positive region, but has a bump
shape in the negative region, i.e., decreases from 0 toward the
negative region of the input signal and then increases again.

fx) = m 1]

In the present study, Swish was used as an AF in order to
improve the denoising performance in the modified DnCNN.
The refined method is hereinafter referred to as the denoising
convolutional neural network with Swish (DnCNNJS]) in
order to distinguish it from the conventional DnCNN.

Data preparation

The MR signal obtained in MRI is acquired as complex
values that include noise. This noise is well modeled by a
Gaussian probability density function in the real and imagin-
ary parts of the complex signal. In the simulation experi-
ments, Gaussian noise was added to the real and imaginary
parts of the MRI signals calculated by MR image models.
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Fig. 2 Profiles of Swish varying the parameter.

MRI images were then reconstructed by applying inverse
Fourier transform to the noisy MRI signals. A reconstructed
image with superimposed noise can be expressed as:

y=xtn 2)

where x denotes an image without spatial phase variation and
noise and 7 denotes Gaussian noise. In the present study, since
the images used to calculate MR signals were magnitude
images, the imaginary part of reconstructed image y contained
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Table 1

Imaging conditions of MR image data set used in the experiments

Data set Imaging subjects Imaging conditions
Data set A 400 MR (TTW, T2W, PDW) images (18 person, 10 (1X1 dataset)
male and 8 females, ages from 26 to 40) MR scanner Philips 1.5 T
T1-weighted TR =9.813 ms, TE = 4.603 ms, NPE = 192,
FA = 8 degrees
T2-weighted TR =8178.34 ms, TE = 100 ms, Npg = 187, echo
train length = 16, Flip angle = 90 degrees
Data set B 900 MR (TTW, T2W, PDW) images (18-person, PD-weighted TR =8178.34 ms, TE = 8 ms, Npg = 187, echo
10 male and 8 females, ages from 26 to 40) train length = 16, Flip angle = 90 degrees
Data set C 1-person, male age 26 MR scanner Canon Medical VantageTitan 3.0 T,

3D fast spin echo, TR = 3500 ms, TE = 352 ms,
spatial resolution = 1.1 mm, flip angle = 90 degrees,
slice thickness = 1.2 mm, slice spacing = 1.2 mm,
256 x 256 pixel image for x—y slices

FA, flip angle; NPE, number of phase encoding; PDW, PD-weighted; TTW, T1-weighted; T2W, T2-weighted.

only noise. Reconstructed images are often provided as the
magnitude images, which are the absolute values of the complex
images. Therefore, we attempted to denoise the magnitude of the
real-part of the complex MRI image y. Noise level is defined as
the ratio of Re(o,,)/max(Re[x]) and is expressed a percentage in
the present paper, where o,, represents the standard deviation of
the added noise, and “Re” is the real part of the signal. The initial
Gaussian noise 7 in image space is nonlinearly transformed, and
noise in the image then becomes Rician-distributed noise. When
the SNR is high, the Rician distribution can be conveniently
approximated by a Gaussian distribution.>®

We used the IXI dataset*' including normal, healthy volun-
teer images for training the CNN and denoising tests. Strictly
speaking, MR images contained in the IXI dataset contain a
small amount of noise. We regarded these images as noise-free
data. We used three datasets: A, B, and C. The imaging
conditions of these datasets are listed in Table 1. Datasets A
and B were used for CNN learning and testing and dataset C
was used only for testing. In dataset A, 400 MR images
contained in the IXI dataset were mixed in order to split the
IXI dataset into four datasets, and three of the four datasets
were used for training and one for testing. In dataset B, 900
MR images contained in the IXI dataset were mixed to split
the IXI dataset into three datasets, and two of the three datasets
were used for training and one for testing. In dataset C, healthy
volunteer images obtained with 3T MRI were used. Informed
consent was obtained from the volunteers.

Data augmentation, which is a technique to increase
the amount of effective training data, was used to boost
the robustness of the network. In the present study, data
augmentation by random rotation and scale change was
used on the training datasets. Random rotation in this
case means a random selection and execution of any
one of eight processes: (1) no change, (2) horizontal
flipping, (3) 90° rotation, (4) 90° rotation and horizontal

flipping, (5) 180° rotation, (6) 180° rotation and horizon-
tal flipping, (7) 27° rotation, and (8) 270° rotation and
horizontal flipping. Scale change converts the image scale
by factors of 1.0, 1.0 x 0.9, 1.0 x 0.9 x 0.8, and
1.0 x 0.9 x 0.8 x 0.7, and the converted images were
then used to train for various object sizes.

Parallelized blind image denoising

In the training of the DnCNN-B network, images with several
noise levels were broken down into small patches, and these
patches were then batched in such a way that patches with
different noise levels were combined in a single batch, as
shown in Fig. 1.

If the noise fluctuates randomly about a zero mean and its
statistics are independent of the position on the image, the
averaging of acquired images will improve the SNR of
images. In the accumulated images during averaging, the
amount of noise increases in proportion to the square root
of the number of accumulations, whereas the amplitude of
image components increases in proportion to the accumula-
tion. Therefore, the SNR of an averaged image is expected to
improve in proportion to the square root of the number of
averagings. Similar to this example, the SNR of an averaged
image will improve if the 2D slice images have distributions
that are similar to those of adjacent images, as in the cases of
multi-slice 2D imaging or 3D Fourier transform imaging. In
general, denoising of higher-SNR images contributes to
smaller degradation of images and higher preservation of
structures. The parallelized blind image denoising (referred
to herein as ParBID) procedure consists of three steps. Figure
3 illustrates the scheme of the ParBID. The first step is
improvement of the image SNR by linearly combining
multi-slice images with given weights. Let the kth slice
image be r, = p; + Jk, where p; is a noise-free image and
Oy 1s the noise superimposed on the image py, then the linear

Magnetic Resonance in Medical Sciences
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d, = DnCNNB(iy)

IT = ART
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Blind CNN Denoising ( DnCNN-B )
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Fig. 3 Schematic of ParBID. The first step is the linear combination of adjacent images with given weights a. The second step is the blind
DnCNN of the combined images. The third step is the separation of linearly combined images by solving linear equations. DnCNN,
denoising convolutional neural network; ParBID, denoising convolutional neural network.

combinations of slice images i; are written as follows using
weight coefficients a; ;:

is - Z Ag kT [3]
k

= Z as,kpk+ Z as,kék-
k k

Equation [3] can be made linear by varying weight coeffi-
cients a,;. By assembling noisy and combined images in
vectors, the linear image combination can be rewritten in
matrix notation:

[4]

I" = ART [5]

where R = (rq, r2,..., 1), 1 = (i3, i2,..., i,), A is n X m size
weight coefficient matrix, and T indicates the transverse of
the vector. The linearly combined image i, has a higher SNR
than 7, while blurring will occur due to the averaging of
multi-slice images. The second step is blind denoising of the
combined images:

dy=DnCNNB(i,) [6]

where DnCNNB(,) refers to DnCNN-B operation with
Swish (hereinafter DnCNN-B refers to DnCNN-B operation
with Swish), and d; indicates the denoised image by the
DnCNN-B. Since averaged image i; has a higher SNR than
ry and the noise distribution on i, varies according to weights

Epub ahead of print

ag . in Eq. [4], the manner of noise removal is considered to
vary in each denoising process of i; in Eq. [6]. The third step
is the separation of linearly combined images by solving
linear equations. When the weighting matrix A is a full row
rank, which makes A'A a regular matrix, denoised images
can be obtained by solving Eq. [7]. Blurring of images is
canceled by this final step:

P=(ATA)"'ATDT 7]

where P and D are vectors of separated denoised image p, and
image d, respectively, and P = (py, p», ..., p,) and D = (d,, d>,

.., d,). Image sequence (p;, ps, ..., p,) is the output of
ParBID, with which we are herein concerned. The ParBID
experiments were carried out using from two to four slices in
our examination. We refer to ParBID using s slices for aver-
aging as “s-slice ParBID”. Coefficients of linear combination
ag . for 2-slice to 4-slice ParBID used in Eq. [4] were deter-
mined by preliminary examination as (0.6, 0.4), (0.5, 0.3, 0.2),
and (0.4, 0.3, 0.2, 0.1), and these values were used in
a cyclical manner, for example, i; = 0.5 + 0.3r, + 0.2r3,
i2 = 0.3]"1 + 0.2]’2 + 0.51’3, and i3 = 0.3}"1 + 0.2}"2 + 0.5}’3 were
used for 3-slice ParBID. ParBID is assumed to be used in a
manner such that the window function that defines the slice
sequence R used for the linear equation shown in Eq. [5] moves
along the slice direction. In other words, target slice images to
be denoised should be placed in the center of the slice sequence,
except for the 2-slice ParBID.
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Comparison of images

Testing was performed using the test data sets listed in Table 1.
In order to evaluate the obtained images quantitatively, we
used the peak SNR (PSNR) and the structural similarity index
(SSIM)*? value defined as follows:

PSNR = 20log, Iﬁ?\’/}[gﬁ] 8]

in which root mean square error (RMSE) is the root mean
square error of the remaining noise using the difference
between the original image p, and the denoised image. The
SSIM is a quality metric used to measure the similarity
between two images.??> The SSIM is considered to be corre-
lated with the quality perception of the human visual system
and is defined as follows:

_ Zﬂrﬂ1+C1 ZGrUt+C2 Grt+C3
SSIM = (ﬂ?-&—ﬂf—l—C] ol +ai+Cy ) \ortoi+Cs 1]
where r and ¢ indicate the reference and test images, respec-

tively. The positive constants C,, C,, and C; are used in order
to avoid a null denominator and are defined as follows:

Ci=(K\LY, Co= (KoL), G = [10]
where L is the maximum pixel value, and K, and K, are small
constants. We use K1 = 0.01 and Kz = 0.03 following the
original paper reporting this index.**

First, comparison of the reconstructed images was per-
formed in order to validate the effectiveness of Swish as an
AF. In order to examine the appropriate Swish parameter £ in
the DnCNN architecture, denoising tests were executed vary-
ing the parameter § from 0.1 to 2.0. Dataset A was used for
the learning and denoising tests. Denoising performances
were compared in terms of the PSNR among the methods,
i.e., the DnCNN(S), DnCNN with ReLU, BM3D, and
WNNM at each noise level of 2.5%, 5.0%, and 7.5%.

In order to evaluate the denoising performance for blind
noise removal with DnCNN-B, the PSNR and SSIM of
denoised images were compared with the DnCNN(S) at
noise levels of 2.5%, 5.0%, and 7.5%. Dataset B was used
for learning and denoising tests. In the following, DnCNN-B
was applied to images in which the noise level varied spa-
tially and the denoising performances were compared with
the DnCNN(S) trained with a single noise level as a control.

ParBID

Examinations of from 2-slice to 4-slice ParBID were per-
formed at noise levels of 2.5%, 5.0%, and 7.5% using the
PSNR of the DnCNN(S) as a control. Dataset B was used for
learning and denoising tests. Improvements of the PSNR and
SSIM were examined with reference to the number of slices
used for ParBID. In order to evaluate the effectiveness of
ParBID for experimentally obtained noisy images, ParBID
was applied to noisy images acquired with 1.5 T MRI
(Gyroscan Intera, Philips Medical Systems, Eindhoven, the

Netherlands). Dataset B was used for learning and dataset C
was used for denoising tests.

Statistical comparisons
Since denoising tests using Swish or ReLU could be per-
formed for the same noisy MR images with the same noise
distributions, a two-sided paired ¢-test was performed
between Swish-based DnCNN and ReLU-based DnCNN at
noise levels of 2.5%, 5.0%, and 7.5%. We assumed that the
significance level was 5% and the mean PSNR difference,
the standard deviation (s.t.d.) of the mean PSNR difference
(s.t.d. of mean), the 95% confidence interval, the t-value, the
degree of freedom (d.f.), and the P-value were calculated.
For the denoising evaluation, we used a computer equipped
with an Intel Core 17-7700 (3.60 GHz) CPU (Intel, Santa Clara,
CA, USA), 32 GB of memory, and an GeForce GTX 1080 Ti
GPU (NVIDIA, Santa Clara, CA, USA) with 11 GB of mem-
ory. It took approximately 9.6 hours to train a 600-image dataset
using the GPU. We used Visual Studio 2017 (Microsoft,
Redmond, WA, USA), MATLAB R2017b (MathWorks,
Natick, MA, USA) with MatConvNet package,”> CUDA 9.0
(NVIDIA), and cuDNN v7.0.5 (NVIDIA) for the framework.

Results

Application of Swish to the DnCNN (DnCNN[S])
Table 2 shows the results of the obtained PSNRs and stan-
dard deviations with Swish parameter f = 0.1, 0.5, 1.0, 1.5,
and 2.0. Table 2 also shows the PSNRs obtained with the
DnCNN with ReLU, BM3D, and WNNM for comparison.
The highest PSNR was obtained with Swish at f= 1.5 for all
noise levels. Based on these results, we hereinafter used
Swish with = 1.5 for the AF of the DnCNN.

Figure 4 shows the box-and-whisker diagram of the PSNR
difference between Swish-based DnCNN (8 = 1.5) and the
ReLU-based DnCNN at noise levels of 2.5%, 5.0%, and 7.5%.
Higher PSNRs were obtained with Swish for 95 out of 100
images at a noise level 2.5%, and all 100 images show higher
PSNRs at noise levels of 5.0% and 7.5%. Table 3 summarizes
the results of two-sided paired #-tests at noise levels of 2.5%,
5.0%, and 7.5%. The mean PSNR difference, the standard
deviation of the mean PSNR difference (s.t.d. of mean),
the 95% confidence interval, the ¢-value, the degree of free-
dom (d.f.), and P-value are listed. The P-values of 5.41 x 10°°
for 2.5%, 1.65 x 10" for 5.0%, and 1.04 x 107" for 7.5%
shown in Table 3 indicate a statistically significant superiority
in PSNR improvement of our method.

Figure 5 shows the denoising results for a PDW image
adding 5.0% noise. Subimages (a) and (b) show images
before and after adding 5.0% noise, respectively, and
subimages (c) through (f) show denoised images using
Swish (f = 1.5), ReLU, WNNM, and BM3D, respectively.
The time required for denoising one image in the DnCNN(S)
was approximately 2s using CPU computing, which is simi-
lar to BM3D, whereas that for WNNM was approximately

Magnetic Resonance in Medical Sciences
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Table 2 Comparison of PSNR in DnCNN with reference to the Swish parameter f at noise levels
of 2.5%, 5.0% and 7.5%. PSNRs obtained in DnCNN with ReLU, WNNM, and BM3D are also

examined for comparison. Bold figures indicate the maximum PSNR at each noise level

Noise level
2.5% 5.0% 7.5%

Method
DnCNN B=0.1 36.50 + 0.648 32.71£0.711 30.59 + 0.734
pB: Swish B=05 36.79 £0.633 32.92 +0.701 30.82 + 0.722
parameter 5 _4 o 36.82 + 0.624 32.95 + 0.694 30.84 + 0.720

B=15 36.86 + 0.595 32.98 + 0.683 30.87 + 0.721

B=2.0 36.85 + 0.596 32.97 + 0.685 30.83 +0.719
DnCNN (ReLU) 36.77 + 0.635 32.88 + 0.704 30.77 £0.726
BM3D 35.63 + 0.621 31.98 + 0.687 29.92 +0.702
WNNM 36.04 + 0.626 32.41 + 0.690 30.05+0.711

BM3D, block-matching and 3D; DnCNN, denoising convolutional neural network; PSNR, peak SNR;
ReLU, rectifier linear unit; WNNM, weighted nuclear norm minimization.
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Fig. 4 Box-and-whisker diagram of
the PSNR difference between
-0.02 DnCNN using Swish (8 = 1.5) and
- ReLU at noise levels 2.5%, 5.0%,
0.04 ° and 7.5%. DnCNN, denoising con-
’ 2 59% 5% 7 5% volutional neural network; PSNR,
) peak SNR; RelU, rectifier linear
noise level unit.

Table 3 Results of two-sided paired t-tests of PSNR difference between Swish-based DnCNN and ReLU-based DnCNN

o . .
95% confidence interval P-value

Noise level Mean difference s.t.d. of mean t-Value d.f. Two-sided
Lower Upper

2.5% pair 0.0204 0.0245 0.01491 0.02582 4.81 99 5.41e-6

5.0% pair 0.0444 0.0166 0.04812 0.04942 11.3 99 1.65e-19

7.5% pair 0.0528 0.0224 0.04778 0.05775 10.5 99 1.04e-17

d.f., degree of freedom; DnCNN, denoising convolutional neural network; ReLU, rectifier linear unit; s.t.d., standard deviation.
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original (high S/N) noisy(5% noise) Swish (8=1.5)

RelLU WNNM

() (h) U]
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Fig. 5 Comparison of denoised images. Subimage (a) and (b) show images before and after adding 5% noise. Subimage (c) and (d) show
denoised images by DnCNN using Swish (8 = 1.5) and ReLU, respectively. Subimage (e) and (f) show denoised images by WNNM and
BM3D. Enlarged images of the area inside the red box on subimage (a) are shown in subimages (g)—(I). Contrast of images is adjusted in the
same condition in order to make it easier to see the differences between them. BM3D, block-matching and 3D; DnCNN, denoising
convolutional neural network; ReLU, rectifier linear unit; WNNM, weighted nuclear norm minimization.

70s. Enlarged images of the area inside the red box on sub-
image (a) are shown in subimages (g) through (1). The con-
trast of images is adjusted to the same condition in order to
make it easier to see the differences between the images.
Comparing the DnCNN-based method using ReLU or Swish
with the conventional WNNM and BM3D, the contrast of the
images remained to a greater degree for the DnCNN-based
method. Comparing the performances for AFs used in the
DnCNN, denoised images by Swish retain the tissue struc-
ture more clearly, as compared to those by ReL.U.

DnCNN-B
Figure 6A and 6B shows the results of the PSNR and SSIM
evaluations of DnCNN-B for noise levels from 2.5% to 7.5%.
The PSNR and SSIM characteristics of DnCNN-B versus
noise levels are shown as red lines, and these values for the
DnCNN(S) trained with fixed noise levels of 2.5%, 5.0%, and
7.5% are shown in the same graph for comparison. The
DnCNN(S) trained with a fixed noise level shows the highest
PSNRs at the noise level at which the network was trained.
However, the performances are degraded significantly at other
noise levels. In contrast, DnCNN-B shows the performance
comparative to the PSNR and the SSIM of the DnCNN(S)
trained with fixed noise levels of 2.5%, 5.0%, and 7.5%.
Denoising tests using an inhomogeneous-noise image
are shown in Fig. 7. Figure 7A shows a map of the noise
level in the FOV, where the noise levels are maintained at a
certain level in a small segment and the noise levels were
varied segment to segment from 2.5%, 5.0%, and 7.5%.
Figure 7B and 7C shows images before and after adding
spatially variant noise, and subimages (d) and (e) show the
denoised images by the DnCNN-B and removed noise that

is calculated by subtracting denoised image (d) from noisy
image (c). The amount of removed noise shows a spatially
variant distribution consistent with the noise levels shown
in Fig. 7A. Figure 7F-7k is enlarged images of the region
inside the red box shown in Fig. 7B. The images are the
original image, an image containing spatially variant noise,
the DnCNN-B image, and DnCNN(S) images trained with
fixed noise levels of 7.5%, 5.0%, and 2.5%, respectively.
The obtained images by the DnCNN(S) with 7.5%, 5.0%,
and 2.5% noises exhibit adequate denoising for the region
at which the trained and tested noise levels match.
However, oversmoothing or residual noise appears where
the trained and tested noise levels do not match, as shown in
Fig. 71-7k. In contrast, DnCNN-B shows an image preser-
ving the fine structure of the subject and is comparable to
the images of the DnCNN(S), with an adequate noise level.
Figure 8 shows the PSNRs of each segment, segments A, B,
and C, and the average of all segments. Similar to the
homogeneous-noise evaluation of Fig. 6, DnCNN-B
shows PSNRs comparative to the case in which the noise
levels of the tested image and trained images match. These
results indicate that blind denoising can appropriately
remove inhomogeneous noise in the image space.

Application of ParBID

Let the sequential s slice images be (pq, pa,..., pn) in order,
then improvements in the PSNR and the SSIM were varied
depending on the position in the slice sequence. Table 4
summarizes the PSNR and the SSIM of each slice image
obtained by ParBID at noise levels of 2.5%, 5.0%, and 7.5%.
ParBID from 2-slice to 4-slice was evaluated using the PSNR
of DnCNN-B as a control.
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Fig. 6 PSNR and SSIM characteristics of DnCNN and DnCNN-B. Subimages (a) and (b) show PSNR and SSIM, respectively. DnCNN(S)s
trained with fixed noise level show highest performances at the noise level where the network was trained, however, the performances are
degraded significantly at other noise levels. DnCNN, denoising convolutional neural network; DnCNN-B, denoising convolutional neural
network-blind; DnCNN(S), denoising convolutional neural network with Swish; PSNR, peak SNR; SSIM, structural similarity index.
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Fig. 7 Denoising results using inhomogeneous-noise image. Subimage (a) shows the noise map on the image space where noise levels are
varied vertically 2.5%, 5.0% and 7.5%. Subimage (b) and (c) show images before and after adding inhomogeneous noise, and (d) and (f)
show the denoised images by DnCNN-B and removed noise, respectively. Subimage (f)—(I) are enlarged images of the region surrounded by
red box shown in (b) in original, spatially-variant noise, DnNCNN-B, DnCNN(S) trained with fixed noise level 7.5%, 5.0%, and 2.5%,
respectively. DnCNN, denoising convolutional neural network; DnCNN-B, denoising convolutional neural network-blind; DnCNN(S),
denoising convolutional neural network with Swish.

Since almost the same PSNR and SSIM values were Figure 9 shows the results of the PSNR and SSIM evalua-
obtained at both end slices (p;, p3) in 3-slice ParBID, and at  tions of ParBID at each noise level. The highest PSNR and
both end slices (p;, p4) and middle slices (p,, p3) in 4-slice ~ SSIM values obtained for the middle slice in each ParBID
ParBID, the averages of these values are listed in Table 4. The ~ were used. The PSNR and the SSIM improve up to three
results show that improvements in the PSNR and the SSIM are  slices compared to DnCNN-B as a control and then decrease
greater at the middle slice, as compared to either end slice. for all noise levels. The improvement in the PSNR was
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Fig. 8 Results of PSNR evaluation
using inhomogeneous-noise image.
PSNR were calculated on segment-
by-segment basis as well as overall
image space. DnCNN, denoising
convolutional  neural  network;
DnCNN-B, denoising convolutional
neural network-blind; PSNR, peak

segment of image space SNR.
Table 4 PSNR and SSIM of denoised image using ParBID at noise levels of 2.5%, 5.0% and 7.5%
DnCNN-B ParBID
INSISIe 2-slice 3-slice 4-slice
evelon 1-slice
End End Middle End Middle
(@) PSNR
2.5% 37.28 £ 0.598 37.75 £ 0.601 37.85 £ 0.604 38.11 £ 0.610 37.71 £ 0.601 37.73 £ 0.605
5.0% 33.05 £ 0.683 33.31 £0.689 33.28 £0.685 33.52 + 0.696 33.32 £0.692 33.35+0.692
7.5% 30.82 £0.721 30.92 £ 0.723 30.88 £ 0.730 30.95 £ 0.736 30.89 £ 0.732 30.91 £0.735
(b) SSIM
2.5% 0.9790 + 2.83e-3 0.9798 + 2.85e-3 0.9797 + 2.85e-3 0.9804 + 2.86e-3 0.9801 + 2.85e-3 0.9803 + 2.86e-3
5.0% 0.9450 £ 4.61e-3 0.9471 £ 4.62e-3 0.9469 + 4.62e-3 0.9478 + 4.64e-3 0.9475 + 4.62e-3 0.9477 + 4.63e-3
7.5% 0.9140 = 6.15e-3 0.9151 £ 6.15e-3 0.9155 £ 6.18e-3 0.9165 + 6.21e-3 0.9158 + 6.19e-3 0.9163 + 6.20e-3

Let the sequential s slice images be (p1, pa, ..., ps) in order, end slices are (p1, p2), (p1, p3) and (p1, pa) for 2-, 3- and 4-slice ParBID, respectively, and
middle slice images are p, and (p,, p3) for 3- and 4-slice ParBID, respectively. DnCNN, denoising convolutional neural network; DnCNN-B,
denoising convolutional neural network-blind; ParBID, parallelized blind image denoising; PSNR, peak SNR; SSIM, structural similarity index.

greater for lower noise levels at 2.5%, as shown in Fig. 9A,
and the improvement in the SSIM is greater for higher noise
levels at 7.5%, as shown in Fig. 9F. Based on these results,
the advantage of ParBID became evident because PSNRs
obtained in ParBID improved compared to the control.
Figure 10 shows the denoised image with ParBID. The
obtained PSNRs and SSIMs are given with the denoising
method in subimages (e) through (i). Enlarged images of the
region inside the red box shown in Fig. 10A are compared.
Subimages (b) and (c) show the images before and after
adding 5.0% noise. The linear combination of adjacent
images is shown in subimage (d). Subimages (e) through
(i) show the denoised images using WNNM, BM3D, sin-
gle-slice DnCNN-B, and the 2- and 3-slice ParBID, respec-
tively. Details of the subjects and image contrast are
preserved to a greater degree in 3-slice ParBID, as compared

10

to single-image DnCNN-B, as shown in the region indicated
by the red dashed circle. The PSNR and SSIM of subimage
(d) were improved compared to DnCNN-B image (g).
Application of ParBID to an experimentally obtained MR
image is shown in Fig. 11. Magnitude images (256 X 256)
were used for testing. Subimage (a) is the target image, and
subimages (b) and (c) are denoised images by BM3D and
WNNM, respectively. Denoised images by DnCNN-B, 2-
slice ParBID, and 3-slice ParBID are shown in subimages
(d) through (f), respectively. Subimages (g) through (1) are
enlarged images of (a)—(f), respectively, for the region sur-
rounded by the red box in subimage (a). Denoised images
() and (1) obtained by 3-slice ParBID clearly retain image
contrast, as shown in the region indicated by the white
arrow. Subimages (m) and (n) are the difference images
between 3-slice ParBID (I) and DnCNN-B (j) and the

Magnetic Resonance in Medical Sciences




38.5

38.0

PSNR [dB]

37.5

37.0

34.0

PSNR [dB]
& .
o (4]
\ :
\
v
d
\
;
/
i

32.0

PSNR [dB]
Q
»

w
A
o

30.5

Number of images used for linear combination

Improved DnCNN with Parallelized Denoising

0.984

0.982
0.980

SSIM

0.978
0.976

0.974

0.950

0.948
0.946

SSIM

0.944
0.942
0.940

0.920

0.918
0.916

SSIM

0.914

0.912

0.910

0 1 2 3 4 5

Number of images used for linear combination

Fig. 9 Results of PSNR and SSIM evaluation with ParBID. PSNR results for 2.5%, 5.0% and 7.5% noise levels are shown in (a), (b), (c) and
SSIM results for 2.5%, 5.0% and 7.5% noise levels are shown in (d), (e), (f) respectively with reference to number of images used for linear
combination. ParBID, denoising convolutional neural network; PSNR, peak SNR; SSIM, structural similarity index.

difference image between 3-slice ParBID (1) and 2-slice
ParBID (k), respectively. An outline of the image appears
to have been extracted in subimages (m) and (n). These
images indicate that details of images are preserved to a
much higher degree in 3-slice ParBID.

Discussion

A preliminary study on the appropriate network depth d and
the size of the receptive field was carried out while varying the
input noise level between 2.5% and 7.5%. The highest perfor-
mance was obtained for a receptive field size of 35 with
network depth d = 17 for all SNRs. Therefore, we used these
parameters in our examination. Next, we examined the valid-
ity of the number of epochs and learning rates used in training.
The PSNR and the SSIM increase rapidly until 10 epochs, and
the change in these values becomes smaller thereafter.
Therefore, we used 20 epochs throughout the present paper.
In order to accelerate the training process of the CNN,
several normalization techniques have been proposed.
These normalizations alleviate the problem of internal cov-
ariance shift and can improve the efficiency of the back-
propagation optimization methods significantly. Swish is a
monotonically increasing function for a positive input,
similar to ReL.U, but has negative output in the region for
a negative input. Klambauer et al. showed that if an AF has
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monotonically increasing response for a positive input and
has negative response for a negative input, and if the input
to the AF follows a Gaussian distribution with mean and
variance floating around 0 and 1, then the mean and var-
iance of the output tend to approach 0 and 1 for certain
weights.”* The bump-shaped function of Swish is properly
scaled to be able to push the output towards zero mean
statistically while having an approximately zero response
to a large negative input. This self-normalizing property
simultaneously addresses the problems of covariate shift
and vanishing of the gradient between layers. We used
Swish instead of ReLU in the DnCNN and applied the
method to the denoising problem of MR images. It was
shown that the PSNR and the SSIM are improved slightly
for all noise levels from 2.5% to 7.5%. The denoised images
shown in Fig. 5 reveal that image contrast remained to a
greater degree in Swish. These results indicate that an AF
having a bump shape with proper adjustment is more sui-
table for the DnCNN than ReLU, and hence has higher
denoising performances.

In the training of DnCNN-B, we tried two
approaches. First, we trained the CNN varying the
noise level from batch to batch, where noise levels of
small patches were the same in a single batch. Second,
training of the CNN was executed by constructing sev-
eral patches, including several noise levels as described

1
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original (high S/N) original (high S/N) noisy image(5%)

Fig. 10 Comparison of denoised images using ParBID and other methods. Subimages (b) and (c) show the images before and after adding 5.0%
noise inside the box region of original high S/N image (a). Subimages (d)—(i) show the linear combination of adjacent 3 images and denoised
images using WNNM, BM3D, single-slice DnCNN-B, and 2- and 3-slice ParBID, respectively. Obtained PSNRs and SSIMs are given with the
denoising method in the subimages (e)—(i). BM3D, block-matching and 3D; DnCNN-B, denoising convolutional neural network-blind; ParBID,
denoising convolutional neural network; PSNRs, peak SNRs; SSIMs, structural similarity indexes; WNNM, weighted nuclear norm minimization.

in Method section. A simulation study showed that blind  indicates that the noise level should be varied from
denoising was successfully obtained by the latter method  patch to patch, so that the CNN does not learn a parti-
and not by the former training method. This result cular noise level.
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e BOA) g .

Fig. 11 Application of ParBID to noisy image obtained with MRI. Subimage (a) is the target noisy image. Denoised images by BM3D, WNNM,
DnCNN-B, and 2- and 3-slice ParBID are shown in (b)—(f), respectively. Subimages (g)—(I) are the enlarged images of (b)—(f), respectively for the
region inside the box in subimage (a). Subimages (m) and (n) are the difference image between 3-slice ParBID and DnCNN-B, and the image
between 3-slice ParBID and 3-slice ParBID, respectively. BM3D, block-matching and 3D; DnCNN-B, denoising convolutional neural network-
blind; ParBID, denoising convolutional neural network; WNNM, weighted nuclear norm minimization.
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According to the results shown in Fig. 6, in which
DnCNN-B was applied to several noise-level images, com-
parative PSNRs with the DnCNN(S) were obtained for each
noise level. As shown in Fig. 6, the highest PSNRs were
obtained in the DnCNN(S) trained with a single noise level,
and comparative PSNRs were obtained in DnCNN-B. Figure 6
shows the feasibility and adaptivity of the DnCNN-B for
images in which the noise level varied spatially. These results
indicate the effectiveness of blind noise removal in MR images
containing spatially variant noises.

It was shown in the examination of 3-slice ParBID that the
PSNR improvements were slightly reduced at both end
slices, p; and ps;, as compared to the middle slice, p,. This
can be attributed to the fact that the image similarity was
reduced because there are two slice intervals between one
end and the other end, like p;—p; in 3-slice ParBID. In
contrast, there is only one slice interval for both directions
in the middle of the three slices p,—p; and p,—p3. Therefore,
greater PSNR improvements were obtained in the middle
slice. Similar to 3-slice ParBID, greater PSNR improvements
were obtained in middle slices in 4-slice ParBID. However,
the improvements are slightly smaller than those of the 3-
slice ParBID, as shown in Fig. 9. This is also attributed to the
similarity of the image distribution. Consider the slice inter-
vals from middle p, to other intervals in 4-slice ParBID.
There is one slice interval between p,—p; and p,—p3, and
two slice intervals between p, and p4. The similarity of the
image distribution will be reduced when the slice interval is
greater than one. Therefore, the PSNR of 4-slice ParBID
becomes slightly smaller than that of the middle slice in 3-
slice ParBID. These results also suggest that we should not
divide the multi-slice images into several blocks and apply-
ing the ParBID on a block-by-block basis, since denoising
was limited to images within a block that may not have
adjacent images at the end of image blocks. Based on these
results, we conclude that three-slice ParBID is the best in our
examination, and the middle slice p, should be adopted in
order to obtain the best PSNR improvement. The best slice
number for ParBID may vary depending on the slice spacing.
If the slice spacing is small, then the best number for com-
bining slice images may vary and may be greater than 3-slice
ParBID. The edges, contours, and contrast of images are
restored by the application of ParBID, even though the
improvements in the PSNR and the SSIM by 3-slice
ParBID are rather small in the numerical evaluation. The
algorithm of ParBID is also effective for other denoising
methods as well, such as BM3D and WNNM, and will
improve the denoising performances compared to single-
slice denoising. However, DnCNN-B is effective for the
MR images with unknown and space-variant noise levels.

Figure 9 shows that improvements in the PSNR are greater
at anoise level 0f 2.5%, as compared to other noise levels. The
PSNR is calculated using the difference between the denoised
image and the ideal high S/N image, which is the image
degradation due to the denoising process. If the amplitude

14

variation of the imaging subject is partially compared to that
of the noise, it is difficult to distinguish whether the pattern is
derived from noise or the structure of the imaging subject in a
single image. Let the image degradation due to single DnCNN
be 4D and let the restoration of the image by ParBID be 4d,
then the SNRs by the DnCNN-B and ParBID can be roughly
estimated as max [p,]/4D and max [p,]/(4D — Ad), respec-
tively. The amount of 4D increases with the level of super-
imposed noise and becomes much greater than 4d at 7.5%.
Therefore, the PSNR improvements related to the difference
of max [p,]/(4D — Ad) and max [p,] /4D will be small com-
pared to smaller-noise cases, such as 5.0% or 2.5%. In con-
trast, with regard to the SSIM, there was no significant change
between noise levels, as shown in Fig. 9B. According to the
results shown in Fig. 11, in which DnCNN-B and ParBID are
applied to an experimentally obtained MR image, the pro-
posed method is effective and provides an improved contrast
image while preserving the fine tissue structure.

There are some limitations to the present study. First, the
DnCNN assumes Gaussian distribution noise with zero
mean. When the SNR of the obtained image is small, the
Rician distribution of magnitude images cannot be approxi-
mated by a Gaussian distribution. The experimental results
showed that the proposed method is effective for images with
7.5% noise. In the case of denoising images containing much
more noise, we can consider applying the DnCNN to real and
imaginary parts of the complex MR image before calculating
the magnitude images, since the noises are assumed to be
more Gaussian. Second, since ParBID assumes the similarity
of the distribution of MR images used for averaging, the
effect of ParBID will be reduced when the similarity of
adjacent sliced images is small, such as when the subject is
moving or the slice interval is thick. Third, since ParBID
assumes zero or very small correlation between the noises on
adjacent sliced images, the benefit of ParBID will be sup-
pressed when there are correlations between sliced images.
Noise on the MR images may have correlations between
sliced images depending on the imaging sequences or
image reconstruction algorithm. For example, sliced 2D
images obtained by the 3D Fourier transform imaging tech-
nique sometimes have small correlation between adjacent
sliced images due to bandwidth limitations in signal acquisi-
tion or a kernel-based 3D filtering operation. In the present
study, although the IXI dataset was regarded as noise-free
data, but it contains a small amount of noise. Denoising
performance may be further improved by using reduced
noise MR images.

Conclusion

The results of the present study suggest that Swish can
improve the denoising performance of the DnCNN com-
pared to the ReLU function. Simulation studies showed
that the DnCNN can remove noise from noisy images,
where the noise level was blind and varied spatially on
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images. It was also suggested that parallelized image denois-
ing using blind denoising has the possibility to further
improve the denoising performance of the DnCNN using
linear operations of images.
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